Texture edge detection by feature encoding and predictive model
Conference Paper
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Texture boundaries or edges are useful information for segmenting heterogeneous textures into several classes. Texture edge detection is different from the conventional edge detection that is based on the pixel-wise changes of gray level intensities, because textures are formed by patterned placement of texture elements over some regions. We propose a prediction-based texture edge detection method that includes encoding and prediction modules as its major components. The encoding module projects n-dimensional texture features onto a 1-dimensional feature map through SOFM algorithm to obtain scalar features, and the prediction module computes the predictive relationship of the scalar features with respect to their neighbors sampled from 8 directions. The variance of prediction errors is used as the measure for detection of edges. In the experiments with the micro-textures, our method has shown its effectiveness in detecting the texture edges.
name of conference
1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)