Comparison of Covariance-Based Track Association Approaches Using Simulated Radar Data Academic Article uri icon


  • When the Air Force Space Surveillance Network observes an object that does not correlate to an entry in the Space Object Catalog, it is called an Uncorrelated Track (UCT). Some of these UCTs arise from objects that are not in the Space Catalog. Before a new object can be added to the catalog, three or four UCTs must be associated so that a meaningful state can be estimated. Covariance matrices can be used to associate the UCTs in a more statistically valid and automated manner than the current labor-intensive process; however, the choice of parameters used to represent the orbit state have a large impact on the results. Covariance-based track association was performed in 10-day simulations of 1,000 space objects within a 20-km band of semimajor axis using many different orbit parameters and propagation methods and compared with a fixed position gate association method. It was found that Cartesian covariance with linearized propagation performed poorly, but when the covariance was propagated with the Unscented Transform the results were much better. Elliptical curvilinear coordinates also performed well, as did covariance in osculating equinoctial elements propagated with the Unscented Transform, but a covariance in mean equinoctial elements propagated with the Unscented Transform achieved the best results.

author list (cited authors)

  • Hill, K., Sabol, C., & Alfriend, K. T.

publication date

  • June 2012