Economic Feasibility of a Mobile Fast Pyrolysis System for Sustainable Bio-crude Oil Production Academic Article uri icon

abstract

  • This paper analyzed the economic feasibility of a mobile bioenergy pyrolysis system using a Monte Carlo simulation model. Pyrolysis transforms any cellulosic materials into i) a bio-oil similar to crude oil ii) a synthesis gas similar to natural gas, and iii) a bio-charcoal substance. The pyrolyzer machine is currently being manufactured and tested with various types of feedstocks including corn stover and energy sorghum. The economic analysis focused on creating an automated process that integrates a transportation logistics cost optimization model with geographic information system (GIS) data. The geographic data provides possible paths for the mobile bioenergy pyrolysis unit as it moves to and from each harvest area, depending on stochastic availability of feedstock (determined by historical crop yields) and distance to oil refineries. The results indicated that there is a low probability of a positive Net Present Value (NPV) with current economic conditions. In general, the NPV was highest with a stationary scenario and it decreased with additional moving times. A sensitivity analysis is presented to assess the potential probability of success of a mobile pyrolysis system under alternative oil prices and feedstock costs scenarios. © 2011 International Food and Agribusiness Management Association (IFAMA).

published proceedings

  • INTERNATIONAL FOOD AND AGRIBUSINESS MANAGEMENT REVIEW

author list (cited authors)

  • Palma, M. A., Richardson, J. W., Roberson, B. E., Ribera, L. A., Outlaw, J., & Munster, C

complete list of authors

  • Palma, Marco A||Richardson, James W||Roberson, Brad E||Ribera, Luis A||Outlaw, Joe||Munster, Clyde

publication date

  • December 2011