Meeting Inelastic Demand in Systems With Storage and Renewable Sources Academic Article uri icon

abstract

  • © 2010-2012 IEEE. We consider a system where inelastic demand for electric power is met from three sources: 1) the grid; 2) in-house renewables such as solar panels; and 3) an in-house energy storage device. In our setting, energy demand, renewable power supply, and cost for grid power are all time-varying and stochastic. Furthermore, there are limits and inefficiency associated with charging and discharging the energy storage device. We formulate the storage operation problem as a dynamic program with parameters estimated from real-world demand, supply, and cost data. As the dynamic program is computationally intensive for large-scale problems, we explore algorithms based on approximate dynamic programming (ADP) and apply them to a test data set. Using the real-world test data, we numerically compare the performance of two ADP-based algorithms against Lyapunov optimization-based algorithms that require no statistical knowledge. Our results ascertain the value of storage and the value of installing a renewable source.

author list (cited authors)

  • Kwon, S., Xu, Y., & Gautam, N.

citation count

  • 28

publication date

  • July 2017