Hereditary approximation property Academic Article uri icon

abstract

  • If X is a Banach space such that the isomorphism constant to ln2 from n-dimensional subspaces grows sufficiently slowly as n , then X has the approximation property. A consequence of this is that there is a Ba- nach space X with a symmetric basis but not isomorphic to l2 so that all subspaces of X have the approximation property. This answers a problem raised in 1980. An application of the main result is that there is a separable Banach space X that is not isomorphic to a Hilbert space, yet every sub- space of X is isomorphic to a complemented subspace of X. This contrasts with the classical result of Lindenstrauss and Tzafriri that a Banach space in which every closed subspace is complemented must be isomorphic to a Hilbert space.

published proceedings

  • ANNALS OF MATHEMATICS

author list (cited authors)

  • Johnson, W. B., & Szankowski, A.

citation count

  • 6

complete list of authors

  • Johnson, WB||Szankowski, A

publication date

  • January 2012