Numerical Investigation of Actively Cooled Structures in Hypersonic Flow
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Copyright 2014 by Indian Institute of Space Science and Technology, Thiruvananthapuram, India. Published by the American Institute of Aeronautics and Astronautics, Inc. This paper presents a numerical evaluation of active-cooling thermal-protection systems in hypersonic flows. The aerothermodynamic model used herein consists of 1) an aerodynamic model based on the Reynolds-averaged Navier-Stokes equations, 2) a thermal-diffusion finite-element model, and 3) a solution methodology that couples the thermaldiffusion and aerothermal components. Hypersonic validation cases are performed on blunt-body and flat-plate geometries. A double-wedge airfoil with a rounded leading edge is simulated at speeds from Mach 3 to Mach 8 at altitudes ranging from sea level to 45 km. Coupled aerodynamic-thermal analysis is performed at a speed of Mach5 at an altitude of 45 km and at a speed of Mach 8 at an altitude of 25 km with several chordwise-position-dependent cooling distributions on the interior of the airfoil. Active cooling using a piecewise continuous cooling distribution results in sufficient temperature reduction but also results in significant chordwise temperature gradients.