Numerical Investigation of Actively Cooled Structures in Hypersonic Flow Academic Article uri icon

abstract

  • Copyright © 2014 by Indian Institute of Space Science and Technology, Thiruvananthapuram, India. Published by the American Institute of Aeronautics and Astronautics, Inc. This paper presents a numerical evaluation of active-cooling thermal-protection systems in hypersonic flows. The aerothermodynamic model used herein consists of 1) an aerodynamic model based on the Reynolds-averaged Navier-Stokes equations, 2) a thermal-diffusion finite-element model, and 3) a solution methodology that couples the thermaldiffusion and aerothermal components. Hypersonic validation cases are performed on blunt-body and flat-plate geometries. A double-wedge airfoil with a rounded leading edge is simulated at speeds from Mach 3 to Mach 8 at altitudes ranging from sea level to 45 km. Coupled aerodynamic-thermal analysis is performed at a speed of Mach5 at an altitude of 45 km and at a speed of Mach 8 at an altitude of 25 km with several chordwise-position-dependent cooling distributions on the interior of the airfoil. Active cooling using a piecewise continuous cooling distribution results in sufficient temperature reduction but also results in significant chordwise temperature gradients.

author list (cited authors)

  • Brown, R. L., Das, K., Cizmas, P., & Whitcomb, J. D.

citation count

  • 11

publication date

  • September 2014