Construction of bovine whole-genome radiation hybrid and linkage maps using high-throughput genotyping.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
High-density whole-genome maps are essential for ordering genes or markers and aid in the assembly of genome sequence. To increase the density of markers on the bovine radiation hybrid map, and hence contribute to the assembly of the bovine genome sequence, an Illumina BeadStation was used to simultaneously type large numbers of markers on the Roslin-Cambridge 3000 rad bovine-hamster whole-genome radiation hybrid panel (WGRH3000). In five multiplex reactions, 6738 sequence tagged site (STS) markers were successfully typed on the WGRH3000 panel DNA. These STSs harboured SNPs that were developed as a result of the bovine genome sequencing initiative. Typically, the most time consuming and expensive part of creating high-density radiation hybrid (RH) maps is genotyping the markers on the RH panel with conventional approaches. Using the method described in this article, we have developed a high-density whole-genome RH map with 4690 loci and a linkage map with 2701 loci, with direct comparison to the bovine whole-genome sequence assembly (Btau_2.0) in a fraction of the time it would have taken with conventional typing and genotyping methods.