Living in a box or call of the wild? Revisiting lifetime inactivity and sarcopenia. Academic Article uri icon


  • SIGNIFICANCE: The accepted effects of aging in mammalian skeletal muscle are progressive atrophy and weakening, or sarcopenia. Canonical hallmarks of aging in skeletal muscle include a reduction in muscle fiber cross-sectional area, a loss in muscle fibers through apoptosis and denervation, and infiltration of connective tissue or fibrosis. Emerging thought suggests that pro-inflammatory signaling and oxidative stress may contribute to sarcopenia. CRITICAL ISSUES: Unfortunately, most of the mammalian models used to examine and understand sarcopenia are confounded by the pervasive influence of prolonged physical inactivity. Further, the potential for underlying metabolic disorder and chronic disease (e.g., type II diabetes and cardiovascular disease) may accelerate skeletal muscle wasting. Because physical inactivity may share elevated pro-inflammatory (tumor necrosis factor-alpha and inducible nitric oxide synthase) and insufficient stress response (insulin-like growth factor-1 [IGF-1], heat-shock protein 25 [HSP25], NAD-dependent deacetylase sirtuin-3 [SIRT-3], and peroxisome proliferator-activated receptor-gamma coactivator 1[PGC-1]) signaling with aging and chronic disease, it is critical to distinguish true aging from chronic inactivity or underlying disease. Conversely, the efficacy of exercise and caloric restrictive interventions against sarcopenia in aging populations appears highly effective when (a) conducted across the lifespan, or (b) at higher intensities when commenced in middle age or later. RECENT ADVANCES: While the prospective mechanisms by which exercise or daily activity provide have not been elucidated, upregulation of HSPs, PGC-1, and IGF-1 may ameliorate inflammatory signaling, apoptosis, and sarcopenia. Limited data indicate that the aging phenotype exhibited by mammals living in their natural habitat (Weddell seal and shrews) express limited apoptosis and fiber atrophy, whereas significant collagen accumulation remains. In addition, aging shrews displayed a remarkable ability to upregulate antioxidant enzymes (copper, zinc isoform of superoxide dismutase, manganese isoform of superoxide dismutase, catalase, and glutathione peroxidase). FUTURE DIRECTIONS: It is possible that in healthy populations requiring daily activity to thrive, fibrosis and weakness, more than atrophy, may be the predominant phenotype of muscle aging until senescence. Elucidating the molecular mechanisms by which lifetime inactivity contributes to sarcopenia and chronic disease will be critical in managing the quality of life and health costs associated with our aging population.

published proceedings

  • Antioxid Redox Signal

altmetric score

  • 3.6

author list (cited authors)

  • Lawler, J. M., & Hindle, A.

citation count

  • 22

complete list of authors

  • Lawler, John M||Hindle, Allyson

publication date

  • January 2011