Evaluating recovery strategies for an ocelot (Leopardus pardalis) population in the United States
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The ocelot Leopardus pardalis population in the United States was listed as endangered in 1982, with only two known isolated breeding populations occurring in southern Texas. Conservation concerns for ocelots include loss of dense thornshrub habitat, mortality from ocelot-vehicle collisions, and genetic erosion. In this study, we used a population viability analysis (PVA) to evaluate four recovery strategies (i.e., supplementation of additional ocelots, reduced road mortality, habitat protection and restoration, and linkage of two breeding populations) for ocelot conservation management. We used the VORTEX (Version 9.42) program to conduct our PVA for an ocelot population located in Cameron County, Texas. Each scenario was simulated 500 times over 100 years. We compared the effectiveness of recovery strategies and combinations thereof with estimates of extinction probability and final population size. Model scenarios with no recovery strategies predicted an extinction probability of 0.65 for the Cameron population of ocelots over 100 years. The protection and restoration of thornshrub habitat was the most effective recovery strategy, followed by population linkage and reduced road mortality, with the supplementation of ocelots being the least effective strategy. Protection and restoration of ocelot habitat cannot be accomplished without the participation of private landowners. Using an adaptive management approach, future actions need to be taken to monitor ocelot populations and habitats and help to reduce the high probability of extinction predicted in our PVA for the ocelot population in Cameron County. 2005 Elsevier Ltd. All rights reserved.