Integrated ecological models: simulation of socio-cultural constraints on ecological dynamics Academic Article uri icon


  • We suggest that general systems theory provides a common philosophical basis for dialog between ecological and social scientists interested in studying the reciprocal interactions of humans and their environment. We (1) provide a synopsis of the 'systems approach' as viewed from the biological and social sciences, respectively; (2) develop a conceptual framework for the explicit linking of ecological and social variables, and (3) draw upon game theoretic results of the Prisoner's Dilemma to represent human decision-making quantitatively in a model that simulates the tragedy of the commons. The model consists of 5 submodels that represent the 'observers world' and each of 4 'participant's worlds.' The observer's-world represents the decision processes, either Optimize or Tit-for-Tat, by which each of 2 users decides to add or remove animals. The 4 perceived worlds represent hypothetical situations in which (1) persons A and B both add an animal; (2) A adds and B does not; (3) B adds and A does not, and (4) neither A nor B add an animal. Simulation results indicate that net worth of the community and of each person individually under Tit-for-Tat is more than double the net worth attained under Optimize. Replacement of the static payoff matrix assumed in game theory with a dynamic quantitative model illustrates how 'norm-based' approaches to ecosystem management can outperform optimizing approaches based on predicted outcomes. Although 'soft systems' techniques may better help decision-makers reach norm-based agreements on ecosystem management, quantitative models have more explanatory value, and if developed sufficiently such models could incorporate complex social dimensions that would enhance further their explanatory value.

published proceedings


author list (cited authors)

  • Grant, W. E., & Thompson, P. B.

citation count

  • 24

complete list of authors

  • Grant, WE||Thompson, PB

publication date

  • December 1997