Numerical and experimental investigation of a serpentine inlet duct Academic Article uri icon

abstract

  • This article presents a numerical and experimental investigation of the flow inside an ultra-compact, serpentine inlet duct. The numerical analysis used two flow solvers: FLUENT, a commercial code, and UNS3D, an in-house code. The flow was modelled using the Reynolds-averaged Navier-Stokes equations. The turbulence effects were modelled by using the shear-stress transport k- model. The numerical investigation was compared against experimental data obtained in an open-circuit, low-speed wind tunnel in the Fluid Dynamics Laboratory at Texas A&M University. The numerical simulations and experimental testing were performed to reveal the separation points and the strong secondary flow phenomena within the inlet. UNS3D overpredicted the location of the first separation point by 9 mm and the location of the second separation point by 1 mm, while the area-averaged pressure loss coefficient was 5% higher than in the experiment. The numerical results of UNS3D agreed better with the experiment than those of FLUENT. 2009 Taylor & Francis.

published proceedings

  • INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS

author list (cited authors)

  • Kirk, A. M., Gargoloff, J. I., Rediniotis, O. K., & Cizmas, P.

citation count

  • 14

complete list of authors

  • Kirk, Aaron M||Gargoloff, Joaquin I||Rediniotis, Othon K||Cizmas, Paul GA

publication date

  • January 2009