Additive angle method for fast large-tip-angle RF pulse design in parallel excitation.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Current methods for parallel excitation RF pulse design are based on the small-tip-angle approximation, which provides a computationally efficient means of pulse calculation. In general, pulses designed with those methods are inaccurate when scaled to produce large-tip angles, and methods for large-tip-angle pulse design are more computationally demanding. This paper introduces a fast iterative method for large-tip-angle parallel pulse design that is formulated as a small number of Bloch equation simulations and fast small-tip-angle pulse designs, the results of which add to produce large-tip-angle pulses. Simulations and a phantom experiment demonstrate that the method is effective in designing multidimensional large-tip-angle pulses of high excitation accuracy, compared to pulses designed with small-tip-angle methods.