Niazi, Peyman (2005-12). Permanent magnet assisted synchronous reluctance motor, design and performance improvement. Doctoral Dissertation. Thesis uri icon

abstract

  • Recently, permanent magnet assisted (PMa)-synchronous reluctance motors
    (SynRM) have been considered as a possible alternative motor drive for high
    performance applications. In order to have an efficient motor drive, performing of three
    steps in design of the overall drive is not avoidable. These steps are design optimization
    of the motor, identification of the motor parameter and implementation of an advanced
    control system to ensure optimum operation.
    Therefore, this dissertation first deals with the design optimization of the Permanent
    Magnet Assisted Synchronous Reluctance Motor (PMa-SynRM). Various key points in
    the rotor design of a low cost PMa-SynRM are introduced and their effects are studied.
    Finite element approach has been utilized to show the effects of these parameters on the
    developed average electromagnetic torque and the total d-q inductances. As it can be
    inferred from the name of the motor, there are some permanent magnets mounted in the
    rotor core. One of the features considered in the design of this motor is the
    magnetization of the permanent magnets mounted in the rotor core using the stator
    windings to reduce the manufacturing cost. At the next step, identification of the motor parameters is discussed. Variation of
    motor parameters due to temperature and airgap flux has been reported in the literatures.
    Use of off-line models for estimating the motor parameters is known as a
    computationally intensive method, especially when the models include the effect of
    cross saturation. Therefore in practical applications, on-line parameter estimation is
    favored to achieve a high performance control system. In this dissertation, a simple
    practical method for parameter estimation of the PMa-SynRM is introduced.
    Last part of the dissertation presents one advanced control strategy which utilized the
    introduced parameter estimator. A practical Maximum Torque Per Ampere (MTPA)
    control scheme along with a simple parameter estimator for PMa-SynRM is introduced.
    This method is capable of maintaining the MTPA condition and stays robust against the
    variations of motor parameters.
    Effectiveness of the motor design procedure and the control strategy is validated by
    presenting simulation and experimental results of a 1.5 kW prototype PMa-SynRM,
    designed and manufactured through the introduced design method.

publication date

  • December 2005