Characterizing dual wavelength polarimetry through the eye for monitoring glucose. Academic Article uri icon


  • Diabetes is an insidious disease that afflicts millions of people worldwide and typically requires the person with the disease to monitor their blood sugar level via finger or forearm sticks multiple times daily. Therefore, the ability to noninvasively measure glucose would be a significant advancement for the diabetic community. The use of optically polarized light passed through the anterior chamber of the eye is one proposed noninvasive approach for glucose monitoring. However, the birefringence of the cornea and the difficulty in coupling the light across the eye have been major drawbacks toward realizing this approach. A dual wavelength optical polarimetric approach has been proposed as a means to potentially overcome the birefringence noise but has never been fully characterized. Therefore, in this paper an optical model has been developed along with experiments performed on New Zealand White rabbit eyes for characterizing the light path and corneal birefringence at two different wavelengths as they are passed through the anterior chamber of the eye. The results show that, without index matching, it is possible to couple the light in and out of the eye but only across a very limited range otherwise the light does not come back out of the eye. It was also shown that there is potential to use a dual wavelength approach to accommodate the birefringence noise of the cornea in the presence of eye motion. These results will be used to help guide the final design of the polarimetric system for use in noninvasive monitoring of glucose in vivo.

published proceedings

  • Biomed Opt Express

author list (cited authors)

  • Malik, B. H., & Cot, G. L.

citation count

  • 26

complete list of authors

  • Malik, Bilal H||Coté, Gerard L

publication date

  • October 2010