Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence. Academic Article uri icon

abstract

  • In a continuing effort to develop a noninvasive means of monitoring glucose levels using the aqueous humor of the eye, a dual-wavelength system is developed to show that varying birefringence, similar to what is seen with a moving cornea, can be compensated. In this work, a dual-wavelength, closed-loop system is designed and a model is developed to extract the glucose concentration information. The system and model are tested using various concentrations of glucose in a birefringent test cell subject to motion artifact. The results show that for a static, nonmoving sample, glucose can be predicted to within 10 mg/dl for the entire physiologic range (0 to 600 mg/dl) for either laser wavelength (523 or 635 nm). In the presence of moving birefringence, each individual wavelength produces standard errors on the order of a few thousand mg/dL. However, when the two wavelengths are combined into the developed model, this error is less than 20 mg/dL. The approach shows that multiple wavelengths can be used to drastically reduce the error in the presence of a moving birefringent sample and thus may have the potential to be used to noninvasively monitor glucose levels in vivo in the presence of moving corneal birefringence.

published proceedings

  • J Biomed Opt

author list (cited authors)

  • Wan, Q., Cot, G. L., & Dixon, J. B.

citation count

  • 27

complete list of authors

  • Wan, Qiujie||Coté, Gerard L||Dixon, J Brandon

publication date

  • March 2005