Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method Academic Article uri icon

abstract

  • We analyze an adaptive discontinuous.nite element method (ADFEM) for symmetric second order linear elliptic operators. The method is formulated on nonconforming meshes made of simplices or quadrilaterals, with any polynomial degree and in any dimension 2. We prove that the ADFEM is a contraction for the sum of the energy error and the scaled error estimator between two consecutive adaptive loops. We design a re.nement procedure that maintains the level of nonconformity uniformly bounded and prove that the approximation classes using continuous and discontinuous.nite elements are equivalent. The geometric decay and the equivalence of classes are instrumental in deriving the optimal cardinality of the ADFEM. We show that the ADFEM (and the AFEM on nonconforming meshes) yields a decay rate of energy error plus oscillation in terms of the number of degrees of freedom as dictated by the best approximation for this combined nonlinear quantity. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

published proceedings

  • SIAM Journal on Numerical Analysis

author list (cited authors)

  • Bonito, A., & Nochetto, R. H.

citation count

  • 70

complete list of authors

  • Bonito, Andrea||Nochetto, Ricardo H

publication date

  • January 2010