Carbon Footprint and Production Costs Associated with Varying the Intensity of Production Practices During Field-grown Shrub Production Academic Article uri icon

abstract

  • This research uses a life cycle analysis and economic engineering approach to determine the costs and global warming potential (GWP) of production and post-production practices associated with Taxus media Densiformis, which is often grown using a more capital-intensive regime during the propagative and harvesting stages than the typical field-grown shrub. Total variable costs incurred during the rooted cutting stage were slightly over $0.24 per marketable rooted cutting. This was made up of $0.1966, $0.032, and $0.0127 for labor, materials, and equipment operating costs, respectively. The GWP of materials and equipment used during the rooted cutting stage of production was 0.0097 and 0.2762 kg CO2 equivalent (CO2e), respectively. Equipment costs in this phase were predominantly from heating the greenhouse (92%) and the greenhouse heating functions comprised 95% of the rooting cutting GWP. GWP during the post-farm gate stage was 2.4506 kg CO2e per marketable shrub but was offset by 12.5522 kg CO2 being sequestered in the shrub during its time in the landscape and weighted over the 100-year assessment period, leaving a net GWP of 8.1824 kg CO2e per marketable shrub by the end of the life cycle. Total takedown and disposal costs (labor) after an assumed 50-year life in the landscape were $9.0610. During the entire life cycle from cutting to landscape to takedown and disposal, total variable costs incurred were $17.9856 per shrub. These findings are consistent with previous studies in that the GWP is positive when considering the entire life cycle of the shrub from propagation to eventual removal from the landscape. Knowing the carbon footprint of production and distribution components of field-grown shrubs will help nursery managers understand the environmental costs associated with their respective systems and evaluate potential system modifications to reduce greenhouse gas (GHG) emissions.

published proceedings

  • HortScience

author list (cited authors)

  • Hall, C. R., & Ingram, D. L.

citation count

  • 4

complete list of authors

  • Hall, Charles R||Ingram, Dewayne L

publication date

  • March 2015