Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs Academic Article uri icon

abstract

  • Cholesterol and docosahexaenoic acid (DHA) are important nutrients for neural development of infants. However, little is known about the effect of cholesterol or DHA on concentrations of amino acids (AA) in neonatal tissues. This study was conducted with the piglet (an established model for studying human infant nutrition) to test the hypothesis that dietary supplementation with the lipids may modulate AA availability in tissues. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of four treatment groups, representing supplementation with 0.0% (control), 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. In brain, cholesterol supplementation reduced (P < 0.05) concentrations of glutamate, serine, glutamine, threonine, beta-alanine, alanine, methionine, isoleucine, leucine, and gamma-aminobutyrate but increased (P < 0.05) concentrations of glycine and lysine, whereas DHA supplementation similarly affected (P < 0.05) concentrations of the same AA (except for isoleucine and lysine) and taurine. In addition, concentrations of most AA in liver, muscle and plasma were substantially altered by dietary supplementation of cholesterol and DHA in a tissue-dependent manner. Further, DHA reduced concentrations of carnosine in skeletal muscle, as well as ammonia in both plasma and brain. The results reveal that cholesterol and DHA can regulate AA metabolism and availability in various tissues of piglets. These novel findings have important implications for designing the next generation of infant formula to optimize neonatal growth and development.

author list (cited authors)

  • Li, P., Kim, S. W., Li, X., Datta, S., Pond, W. G., & Wu, G.

citation count

  • 46
  • 48

publication date

  • October 2008