Design and analysis of fuzzy morphological algorithms for image processing
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
A general paradigm for lifting binary morphological algorithms to fuzzy algorithms is employed to construct fuzzy versions of classical binary morphological operations. The lifting procedure is based upon an epistemological interpretation of both image and filter fuzzification. Algorithms are designed via the paradigm for various fuzzifications and their performances are analyzed to provide insight into the kind of liftings that produce suitable results. Algorithms are discussed for three image processing tasks: shape detection, edge detection, and clutter removal. Detailed analyses are given for the effect of noise and its mitigation owing to fuzzy approaches. It is demonstrated how the fuzzy hit-or-miss transform can be used in conjunction with a decision procedure to achieve word recognition. 1997 IEEE.