Sample-Based Prior Probability Construction Using Biological Pathway Knowledge
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Small samples are commonplace in genomic/proteomic classification, the result being inadequate classifier design and poor error estimation. The problem has recently been addressed by utilizing prior knowledge in the form of a prior distribution on an uncertainty class of feature-label distributions. A critical issue remains: how to incorporate biological knowledge into the prior distribution. For genomics/proteomics, the most common kind of knowledge is in the form of signaling pathways. In this paper, we address the problem of prior probability construction by proposing a series of optimization paradigms that utilize the incomplete prior information contained in pathways. In the special case of a Normal-Wishart prior distribution on the mean and inverse covariance matrix (precision matrix) of a Gaussian distribution, these optimization problems become convex. 2013 IEEE.
name of conference
2013 Asilomar Conference on Signals, Systems and Computers