High-Performance Predictive Control of Quasi-Impedance Source Inverter Academic Article uri icon

abstract

  • 1986-2012 IEEE. The quasi-Z-source inverter (qZSI) has attracted much attention for motor drives and renewable energy applications due to its capability to boost or buck in a single converter stage. However, this capability is associated with different challenges related to the closed-loop control of currents, control the dc capacitor voltage, produce three-phase ac output current with high dynamic performance, and obtain continuous and low ripple input current. This paper presents a predictive control strategy for a three-phase qZSI that fulfills these requirements without adding any additional layers of control loops. The proposed controller implements a discrete-time model of the qZSI to predict the future behavior of the circuit variables for each switching state, along with a set of multiobjective control variables all in one cost function. The quasi-impedance network and the ac load are considered together when designing the controller in order to obtain stability of the impedance network with a step change in the output reference. A detailed comparative investigation between the proposed controller and the conventional proportional-integral (PI) controller is presented to prove the superiority of the proposed method over the conventional control method. Simulation and experimental results are presented.

published proceedings

  • IEEE TRANSACTIONS ON POWER ELECTRONICS

author list (cited authors)

  • Mosa, M., Balog, R. S., & Abu-Rub, H.

citation count

  • 65

complete list of authors

  • Mosa, Mostafa||Balog, Robert S||Abu-Rub, Haitham

publication date

  • April 2017