River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models Academic Article uri icon

abstract

  • ¬© 2016, Springer Science+Business Media Dordrecht. This study develops and applies three hybrid models, including wavelet packet-artificial neural network (WPANN), wavelet packet-adaptive neuro-fuzzy inference system (WPANFIS) and wavelet packet-support vector machine (WPSVM), combining wavelet packet decomposition (WPD) and machine learning models, ANN, ANFIS and SVM models, for forecasting daily river stage and evaluates their performance. The WPANN, WPANFIS and WPSVM models using inputs decomposed by the WPD are found to produce higher efficiency based on statistical performance criteria than the ANN, ANFIS and SVM models using original inputs. Performance evaluation for various mother wavelets indicates that the model performance is dependent on mother wavelets and the WPD using Symmlet-10 and Coiflet-18 is more effective to enhance the efficiency of the conventional machine learning models than other mother wavelets. It is found that the WPANFIS model outperforms the WPANN and WPSVM models, and the WPANFIS14-coif18 model produces the best performance among all other models in terms of model efficiency. Therefore, the WPD can significantly enhance the accuracy of the conventional machine learning models, and the conjunction of the WPD and machine learning models can be an effective tool for forecasting daily river stage¬†accurately.

author list (cited authors)

  • Seo, Y., Kim, S., Kisi, O., Singh, V. P., & Parasuraman, K.

citation count

  • 26

publication date

  • June 2016