A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP) Academic Article uri icon

abstract

  • 2016 Elsevier B.V. Drought is among the costliest natural hazards worldwide and extreme drought events in recent years have caused huge losses to various sectors. Drought prediction is therefore critically important for providing early warning information to aid decision making to cope with drought. Due to the complicated nature of drought, it has been recognized that the univariate drought indicator may not be sufficient for drought characterization and hence multivariate drought indices have been developed for drought monitoring. Alongside the substantial effort in drought monitoring with multivariate drought indices, it is of equal importance to develop a drought prediction method with multivariate drought indices to integrate drought information from various sources. This study proposes a general framework for multivariate multi-index drought prediction that is capable of integrating complementary prediction skills from multiple drought indices. The Multivariate Ensemble Streamflow Prediction (MESP) is employed to sample from historical records for obtaining statistical prediction of multiple variables, which is then used as inputs to achieve multivariate prediction. The framework is illustrated with a linearly combined drought index (LDI), which is a commonly used multivariate drought index, based on climate division data in California and New York in the United States with different seasonality of precipitation. The predictive skill of LDI (represented with persistence) is assessed by comparison with the univariate drought index and results show that the LDI prediction skill is less affected by seasonality than the meteorological drought prediction based on SPI. Prediction results from the case study show that the proposed multivariate drought prediction outperforms the persistence prediction, implying a satisfactory performance of multivariate drought prediction. The proposed method would be useful for drought prediction to integrate drought information from various sources for early drought warning.

published proceedings

  • JOURNAL OF HYDROLOGY

altmetric score

  • 0.25

author list (cited authors)

  • Hao, Z., Hao, F., & Singh, V. P.

citation count

  • 38

complete list of authors

  • Hao, Zengchao||Hao, Fanghua||Singh, Vijay P

publication date

  • August 2016