Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data Academic Article uri icon

abstract

  • A semidiscrete mixed finite element approximation to parabolic initial-boundary value problems is introduced and analyzed. Superconvergence estimates for both pressure and velocity are obtained. The estimates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in L2 and data in Hr, for r sufficiently large. Because of the smoothing properties of the parabolic operator, these estimates for large time levels essentially coincide with the estimates obtained earlier for smooth solutions. However, for small time intervals we obtain the correct convergence orders for nonsrnooth data.

published proceedings

  • NUMERISCHE MATHEMATIK

author list (cited authors)

  • Chen, H. S., Ewing, R., & Lazarov, R.

citation count

  • 20

complete list of authors

  • Chen, HS||Ewing, R||Lazarov, R

publication date

  • January 1998