Plot-scale effects on runoff and erosion along a slope degradation gradient Academic Article uri icon

abstract

  • In Earth and ecological sciences, an important, crosscutting issue is the relationship between scale and the processes of runoff and erosion. In drylands, understanding this relationship is critical for understanding ecosystem functionality and degradation processes. Recent work has suggested that the effects of scale may differ depending on the extent of degradation. To test this hypothesis, runoff and sediment yield were monitored during a hydrological year on 20 plots of various lengths (1-15 m). These plots were located on a series of five reclaimed mining slopes in a Mediterranean-dry environment. The five slopes exhibited various degrees of vegetative cover and surface erosion. A general decrease of unit area runoff was observed with increasing plot scale for all slopes. Nevertheless, the amount of reinfiltrated runoff along each slope varied with the extent of degradation, being highest at the least degraded slope and vice versa. In other words, unit area runoff decreased the least on the most disturbed site as plot length increased. Unit area sediment yield declined with increasing plot length for the undisturbed and moderately disturbed sites, but it actually increased for the highly disturbed sites. The different scaling behavior of the most degraded slopes was especially clear under high-intensity rainfall conditions, when flow concentration favored rill erosion. Our results confirm that in drylands, the effects of scale on runoff and erosion change with the extent of degradation, resulting in a substantial loss of soil and water from disturbed systems, which could reinforce the degradation process through feedback mechanisms with vegetation. © 2010 by the American Geophysical Union.

author list (cited authors)

  • Moreno-de las Heras, M., Nicolau, J. M., Merino-Martín, L., & Wilcox, B. P.

publication date

  • January 1, 2010 11:11 AM