Distilling two-atom distance information from intensity-intensity correlation functions Academic Article uri icon

abstract

  • The intensity-intensity correlation function of the resonance fluorescence light of two two-level atoms driven by a resonant standing-wave laser field is examined. Our aim is to gain information on the distance between the two atoms from observables accessible in experiments. For this, we numerically solve the time-evolution equations of the system and calculate the steady-state intensity-intensity correlation by using the Laplace transform and quantum regression theory. By varying the interatomic distance from about half a wavelength down to small fractions of a wavelength, we show that the correlation function exhibits characteristic properties for different distance ranges. Based on these results, we propose a scheme to obtain interatomic distance information from the power spectrum of the correlation function, which allows us to extract the desired distance information over a wide range of distances with high accuracy. 2006 The American Physical Society.

published proceedings

  • PHYSICAL REVIEW A

author list (cited authors)

  • Chang, J., Evers, J., & Zubairy, M. S.

citation count

  • 26

complete list of authors

  • Chang, Jun-Tao||Evers, Joerg||Zubairy, M Suhail

publication date

  • October 2006