Reducing SAR in parallel excitation using variable-density spirals: a simulation-based study.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Parallel excitation using multiple transmit channels has emerged as an effective method to shorten multidimensional spatially selective radiofrequency (RF) pulses, which have a number of important applications, including B1 field inhomogeneity correction in high-field MRI. The specific absorption rate (SAR) is a primary concern in high-field MRI, where wavelength effects can lead to local peaks in SAR. In parallel excitation, the subjects are exposed to RF pulses from multiple coils, which makes the SAR problem more complex to analyze, yet potentially enables greater freedom in designing RF pulses with lower SAR. Parallel-excitation techniques typically employ either Cartesian or constant-density (CD) spiral trajectories. In this article, variable-density (VD) spiral trajectories are explored as a means for SAR reduction in parallel-excitation pulse design. Numerical simulations were conducted to study the effects of CD and VD spirals on parallel excitation. Specifically, the electromagnetic fields of a four-channel transmit head coil with a three-dimensional head model at 4.7 T were simulated using a finite-difference time domain method. The parallel RF pulses were designed and the resulting excitation patterns were generated using a Bloch simulator. The SAR distributions due to CD and VD spirals were evaluated quantitatively. The simulation results show that, for the same pulse duration, parallel excitation with VD spirals can achieve a lower SAR compared to CD spirals for parallel excitation. VD spirals also resulted in reduced artifact power in the excitation patterns. This gain came with slight, but noticeable, degrading of the spatial resolution of the resulting excitation patterns.