A microfluidically cryocooled spiral microcoil with inductive coupling for MR microscopy.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Magnetic resonance (MR) microscopy typically employs microcoils for enhanced local signal-to-noise ratio (SNR). Planar (surface) microcoils, in particular, offer the potential to be configured into array elements as well as to enable the imaging of extremely small samples because of the uniformity and precision provided by microfabrication techniques. Microcoils, in general, however, are copper-loss dominant, and cryocooling methods have been successfully used to improve the SNR. Cryocooling of the matching network elements, in addition to the coil itself, has shown to provide the most improvement, but can be challenging with respect to cryostat requirements, cabling, and tuning. Here we present the development of a microfluidically cryocooled spiral microcoil with integrated microfabricated parallel plate capacitors, allowing for localized cryocooling of both the microcoil and the on-chip resonating capacitor to increase the SNR while keeping the sample-to-coil distance within the most sensitive imaging range of the microcoil. Inductive coupling was used instead of a direct transmission line connection to eliminate the physical connection between the microcoil and the tuning network so that a single cryocooling microfluidic channel could enclose both the microcoil and the on-chip capacitor with minimum loss in cooling capacity. Comparisons between the cooled and uncooled cases were made via Q-factor measurements and agreed well with the theoretically achievable improvement: the cooled integrated capacitor coil with inductive coupling achieved a factor of 2.6 improvement in Q-factor over a reference coil conventionally matched and tuned with high- Q varactors and capacitively connected to the transmission line.