Reforming glycerol under electro-statically charged surface conditions Academic Article uri icon


  • Catalysis is dependent on electronic interactions that occur between substrate molecules and surface atoms of a catalyst. Although these electronic interactions have been altered by means of adding dopants, the effect of direct extraneous alteration of electronic structure of catalyst-substrate system has not yet been studied. Here, we studied the effects of electrically charging a conductive catalyst surface (Ni-Ce/carbon) and a substrate system (glycerol nanodroplets) on the efficacy of steam reforming. The behavior of the system when the catalysts surface was excited with electrons while the substrates were positively charged was studied at varying temperatures and polarity. It was evident that throughout the temperature ranges tested, the hydrogen yields increased consistently when the system was charged as opposed to reforming under neutral conditions. Reforming under electrically charged surface conditions resulted in a 25% increase in hydrogen selectivity, and 64% increase in substrate conversion. The effects were more pronounced at temperatures below the glycerol boiling point. These results expose the possibility of controlling the outcome of a reaction by extraneous manipulation of the electronic structure of a catalyst/substrate surface. 2010 The Royal Society of Chemistry.

published proceedings

  • Energy & Environmental Science

author list (cited authors)

  • Nawaratna, G., Adhikari, S., Lacey, R. E., & Fernando, S. D.

publication date

  • January 1, 2010 11:11 AM