Regional contributions to airborne particulate matter in central California during a severe pollution episode Academic Article uri icon


  • The externally-mixed source-oriented UCD/CIT air quality model was applied to determine the significance of inter-regional transport for primary and secondary particulate matter (PM) in California's Central Valley during a severe wintertime PM pollution episode from December 15, 2000 to January 7, 2001. The gases and primary PM emitted from eight different geographical sub-regions were tracked separately in a model simulation that included transport, physical and chemical transformation and deposition processes. The model results directly predict the contribution that each sub-region makes to PM concentrations throughout the entire model domain. The boundary layer was relatively stagnant during the simulated 3-week air quality episode, and no consistent transport pattern for primary PM was predicted. Several significant inter-regional transport events were identified that each lasted a few days. Each of these inter-regional events was characterized by transport of gas-phase precursors of nitrate that combined with local emissions of ammonia to produce particulate nitrate. Nitrate already in the particle phase was not transported efficiently due to higher dry deposition rates for particles relative to gas-phase nitrogen oxides. The distinctive pattern of transport for nitrate precursors reflects the relatively long timescales required to convert NOx emissions to nitrate during winter conditions characterized by low temperatures, weak photolysis rates, and low oxidant concentrations. The equilibrium partitioning of nitrate and ammonia to the particle phase is relatively fast once the nitrate has been produced. The most-likely transport distance for nitrate during the current episode varied from 130-140 km for the northern portion of the Central Valley to 50-60 km in the southern portion of the Central Valley. Sub-regions further south in the Valley have smaller transport distances because of slower wind speeds and the greater abundance of ammonia in these areas, leading to faster conversion of gas-phase reactive nitrogen into particulate nitrate, which has a higher dry deposition rate than the gas-phase species. The most-likely transport distance for primary organic compounds (OC) was found to be less than that for nitrate, varying from 50 to 60 km for the northern portion of the Valley to 20-30 km for southern portion of the Valley. Overall, 68% of the particulate nitrate formed in the most polluted sub-regions of the Central Valley originates from emissions in those same sub-regions. Local emissions controls should therefore provide an effective strategy to reduce airborne particulate matter concentrations to acceptable levels. 2008 Elsevier Ltd. All rights reserved.

published proceedings


author list (cited authors)

  • Ying, Q. i., & Kleeman, M.

citation count

  • 40

complete list of authors

  • Ying, Qi||Kleeman, Michael

publication date

  • February 2009