A cell-local finite difference discretization of the low-order quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes Academic Article uri icon


  • We present a quasidiffusion (QD) method for solving neutral particle transport problems in Cartesian XY geometry on unstructured quadrilateral meshes, including local refinement capability. Neutral particle transport problems are central to many applications including nuclear reactor design, radiation safety, astrophysics, medical imaging, radiotherapy, nuclear fuel transport/storage, shielding design, and oil well-logging. The primary development is a new discretization of the low-order QD (LOQD) equations based on cell-local finite differences. The accuracy of the LOQD equations depends on proper calculation of special non-linear QD (Eddington) factors from a transport solution. In order to completely define the new QD method, a proper discretization of the transport problem is also presented. The transport equation is discretized by a conservative method of short characteristics with a novel linear approximation of the scattering source term and monotonic, parabolic representation of the angular flux on incoming faces. Analytic and numerical tests are used to test the accuracy and spatial convergence of the non-linear method. All tests exhibit O(h2) convergence of the scalar flux on orthogonal, random, and multi-level meshes. 2014.

published proceedings


author list (cited authors)

  • Wieselquist, W. A., Anistratov, D. Y., & Morel, J. E.

citation count

  • 13

complete list of authors

  • Wieselquist, William A||Anistratov, Dmitriy Y||Morel, Jim E

publication date

  • September 2014