Maintenance of ZPA signaling in cultured mouse limb bud cells. Academic Article uri icon

abstract

  • The positional signal localized to the posterior (zone of polarizing activity or ZPA) region of the vertebrate limb is transiently expressed during development and a decline in ZPA signaling is accelerated when posterior cells are dissociated and cultured in vitro. The evidence that cultured posterior cells display a precocious decline in ZPA signaling when compared to in vivo studies suggests that a factor present in the limb bud maintains or stabilizes ZPA signaling during limb outgrowth and that this maintenance factor is lost and/or exhausted in in vitro studies. We have developed a new culture technique, 'microdissociation', which preserves extracellular components that we have found to be necessary for ZPA signal maintenance. Our data suggest that the limb bud ectoderm produces a maintenance activity that becomes stored in the extracellular matrix where it acts on limb bud cells to stabilize the activity of the ZPA signal. Using our initial characterization of this maintenance activity, we have identified a growth factor, FGF-2 (bFGF), that can replace all of the ZPA signaling maintenance activity observed in microdissociate cultures. The existence of various members of the FGF family in the developing limb strongly argues a role for FGF in stabilizing ZPA signaling in vivo.

author list (cited authors)

  • Anderson, R., Landry, M., & Muneoka, K.

citation count

  • 37

publication date

  • April 1993