Endometrial effects of selective estrogen receptor modulators (SERMs) on estradiol-responsive gene expression are gene and cell-specific. Academic Article uri icon


  • Three selective estrogen receptor modulator (SERM) drugs which included 4-OH-tamoxifen (Tam), EM-800 (EM) and GW 5638 (GW) were investigated to determine their ability to inhibit estradiol-responsive gene expression in sheep endometrium. The uteri of ovariectomized ewes (10 ewes per SERM group) were infused with 10(-7)M SERMs for 24h prior to hysterectomy. Five ewes from each group received 50 microg 17beta-estradiol (E2) and the remaining five ewes received vehicle 18 h prior to hysterectomy. Northern blot analyses and in situ hybridization demonstrated that E2 treatment increased estrogen receptor (ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and cyclophilin (CYC) mRNA levels in most endometrial cells examined. Tam and GW exhibited characteristics similar to E2 by increasing ER gene expression, but they antagonized the E2-induced increases in PR and CYC mRNA levels. EM acted as an E2-agonist of GAPDH gene expression, but antagonized the E2 up-regulation of ER, PR and CYC gene expression in most endometrial cells. Immunohistochemistry determined that EM decreased ER protein levels in the glandular epithelium, and the SERMs investigated antagonized increases in PR protein levels in endometrium. In conclusion, GW and EM exhibit fewer agonist effects than Tam on endometrial gene expression. EM demonstrated the greatest antagonism of E2-enhanced levels of ER, PR and CYC, likely due to the inhibition of ER gene expression at both mRNA and protein levels.

published proceedings

  • J Steroid Biochem Mol Biol

author list (cited authors)

  • Farnell, Y. Z., & Ing, N. H.

citation count

  • 9

complete list of authors

  • Farnell, Yuhua Z||Ing, Nancy H

publication date

  • April 2003