Picosecond dynamics of primary electron-transfer processes in bacterial photosynthesis.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The primary electron transfer processes in Rhodopseudomonas sphaeroides R-26 were studied as a function of temperature by means of picosecond spectroscopy. The first chemical step of the bacterial photosynthesis involves an electron transfer from the excited state of a bacteriochlorophyll a dimer, (BChl)2, to a bacteriopheophytin (BPh) to form the radical ion pair (BChl)2+. BPh-.. The upper limit for the formation time of this ion-pair was found to be 10 ps, at temperatures in the range 300-4.2 degree K. Similarly, the second chemical step, involving electron transfer from BPh-. to an ubiquinone-iron complex (QFe), was found to have a lifetime of approximately 150 ps, also independent of temperature in the same range. We interpret the absence of temperature dependence as indicating that process 2 proceeds via a tunneling mechanism. Utilizing our results in conjunction with electron tunneling theories, we calculate the distance between BPh-. and Q(Fe) to be 9--13 A. Our results also imply a closer proximity between (BChl)2 and BPh.