Urea synthesis in enterocytes of developing pigs.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Urea synthesis from ammonia, glutamine and arginine was determined in enterocytes from newborn (0-day-old), 2-21-day-old suckling, and 29-58-day-old post-weaning pigs. Pigs were weaned at 21 days of age. Cells were incubated for 30 min at 37 degrees C in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing (i) 0.5-2 mM NH4Cl plus 0.05-2 mM ornithine and 2 mM aspartate, (ii) 1-5 mM glutamine, or (iii) 0.5-2 mM arginine. In enterocytes from newborn and suckling pigs, there was no measurable synthesis of urea from ammonia, glutamine or arginine, and analysis of amino acids by a sensitive fluorimetric HPLC method revealed the formation of negligible amounts of ornithine from arginine. In contrast, in cells from post-weaning pigs, relatively large amounts of urea and ornithine were produced from ammonia, glutamine and arginine in a dose-dependent manner. To elucidate the mechanism of the developmental change of urea synthesis in pig enterocytes, the activities of urea-cycle enzymes were determined. The activities of enterocyte carbamoyl phosphate synthase I and ornithine carbamoyltransferase were lower in post-weaning pigs than in suckling ones, whereas there was no difference in arginino-succinate lyase. The activities of argininosuccinate synthase and arginase were increased by 4-fold and 50-100-fold, respectively, in enterocytes from post-weaning pigs compared with suckling pigs. The induction of arginase appears to be sufficient to account for the formation of urea from ammonia, glutamine and arginine in post-weaning pig enterocytes. These results demonstrate for the first time the presence of synthesis of urea from extracellular or intramitochondrially generated ammonia in enterocytes of post-weaning pigs. This hitherto unrecognized urea synthesis in these cells may be a first line of defence against the potential toxicity of ammonia produced by the extensive intestinal degradation of glutamine (a major fuel for enterocytes) and derived from diet and luminal micro-organisms.