L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2-AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
BACKGROUND: The tight junctions (TJs) are essential for maintenance of the intestinal mucosal barrier integrity. Results of our recent work show that dietary l-glutamine (Gln) supplementation enhances the protein abundance of TJ proteins in the small intestine of piglets. However, the underlying mechanisms remain largely unknown. OBJECTIVE: This study was conducted to test the hypothesis that Gln regulates TJ integrity through calcium/calmodulin-dependent kinase 2 (CaMKK2)-AMP-activated protein kinase (AMPK) signaling which, in turn, contributes to improved intestinal mucosal barrier function. METHODS: Jejunal enterocytes isolated from a newborn pig were cultured in the presence of 0-2.0 mmol Gln/L for indicated time points. Cell proliferation, monolayer transepithelial electrical resistance (TEER), paracellular permeability, expression and distribution of TJ proteins, and phosphorylated AMPK were determined. RESULTS: Compared with 0 mmol Gln/L, 2.0 mmol Gln/L enhanced (P < 0.05) cell growth (by 31.9% at 48 h and 11.1% at 60 h). Cells treated with 2 mmol Gln/L increased TEER by 32.2% at 60 h, and decreased (P < 0.05) TJ permeability by 20.3-40.0% at 36-60 h. In addition, 2.0 mmol Gln/L increased (P < 0.05) the abundance of transmembrane proteins, such as occludin, claudin-4, junction adhesion molecule (JAM)-A, and the plaque proteins zonula occludens (ZO)-1, ZO-2, and ZO-3 by 1.8-6 times. In contrast, 0.5 mmol Gln/L had a moderate effect on TJ protein abundance (20.2-70.5%; P < 0.05) of occludin, claudin-3, claudin-4, JAM-A, and ZO-1. 2.0 mmol Gln/L treatment led to a greater distribution of claudin-1, claudin-4, and ZO-1 at plasma membranes compared with 0 mmol Gln/L. This effect of Gln was mediated by the activation of CaMKK2-AMPK signaling, because either depletion of calcium from the medium or the presence of an inhibitor of CaMKK2 abrogated the effect of Gln on epithelial integrity. CONCLUSION: Our findings indicate that activation of CaMKK2-AMPK signaling by Gln is associated with improved intestinal mucosal barrier function through enhancing the abundance of TJ proteins and altering their intracellular localization in intestinal porcine epithelial cells.