Femtosecond laser induced structural dynamics and melting of Cu (111) single crystal. An ultrafast time-resolved x-ray diffraction study
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2017 Author(s). Femtosecond, 8.04 keV x-ray pulses are used to probe the lattice dynamics of a 150 nm Cu (111) single crystal on a mica substrate irradiated with 400 nm, 100 fs laser pulses. For pump fluences below the damage and melting thresholds, we observed lattice contraction due to the formation of a blast force and coherent acoustic phonons with a period of 69 ps. At larger pump fluence, solid to liquid phase transition, annealing, and recrystallization were measured in real time by monitoring the intensity evolution of the probing fs x-ray rocking curves, which agreed well with theoretical simulation results. The experimental data suggest that the melting process is a purely thermal phase transition. This study provides, in real time, an ultrafast time-resolved detailed description of the significant processes that occur as a result of the interaction of a femtosecond light-pulse with the Cu (111) crystal surface.