EFFECTIVENESS OF EARTHQUAKE SELECTION AND SCALING METHOD IN NEW ZEALAND Academic Article uri icon

abstract

  • In New Zealand, time history analysis is either the required or preferred method of assessing seismic demands for torsionally sensitive and other important structures, but the criteria adopted for the selection of ground motion records and their scaling to generate the seismic demand remains a contentious and debatable issue. In this paper, the scaling method based on the least squares fit of response spectra between 0.4-1.3 times the structure's first mode period as stipulated in the New Zealand Standard for Structural Design Actions: Earthquake Actions (NZS1170.5) [1] is compared with the scaling methods in which ground motion records are scaled to match the peak ground acceleration (PGA) and spectral acceleration response at the natural period of the structure corresponding to the first mode with 5% of critical damping; i.e. Sa(T1, 5%). Incremental dynamic analysis (IDA) is used to measure the record-torecord randomness of structural response, which is also a measure of the efficiency of the intensity measure (IM) used. Comparison of the dispersions of IDA curves with the three different IMs; namely PGA, Sa(T1, 5%) and NZS1170.5 based IM, shows that the NZSl 170.5 scaling method is the most effective for a large suite of ground motions. Nevertheless, the use of only three randomly chosen ground motions as presently permitted by NZS1170.5 is found to give significantly low confidence in the predicted seismic demand. It is thus demonstrated that more records should be used to provide a robust estimate of likely seismic demands.

published proceedings

  • BULLETIN OF THE NEW ZEALAND SOCIETY FOR EARTHQUAKE ENGINEERING

author list (cited authors)

  • Dhakal, R. P., Singh, S., & Mander, J. B.

complete list of authors

  • Dhakal, Rajesh P||Singh, Sandip||Mander, John B

publication date

  • January 2007