Molecular Dynamics Simulations of Ion-Bombarded Graphene Academic Article uri icon

abstract

  • Using molecular dynamics simulations and a hybrid Tersoff-ZBL potential, the effects of irradiating graphene with a carbon ion at several positions and several energies from 0.1 eV to 100 keV are studied. The simulations show four types of processes: absorption, reflection, transmission, and vacancy formation. At energies below 10 eV, the dominant process is reflection; between 10 and 100 eV, it is absorption; and between 100 eV and 100 keV, the dominant process is transmission. Vacancy formation is a low-probability process that takes place at energies above 30 eV. Three types of defects are found: adatom, single vacancy, and 5-8-5 defect formed from a double-vacancy defect. The simulations provide a fundamental understanding of the graphene carbon bombardment and the parameters to develop graphene devices by controlling defect formation. 2012 American Chemical Society.

published proceedings

  • JOURNAL OF PHYSICAL CHEMISTRY C

altmetric score

  • 8.864

author list (cited authors)

  • Bellido, E. P., & Seminario, J. M.

citation count

  • 46

complete list of authors

  • Bellido, Edson P||Seminario, Jorge M

publication date

  • February 2012