Argon-Beam-Induced Defects in a Silica-Supported Single-Walled Carbon Nanotube
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2014 American Chemical Society. Ion beams can be used to tailor the structure and properties of carbon nanostructures. Using molecular dynamics simulations, we explored the effects of irradiating silica-supported single-walled carbon nanotube (CNT) with an ion beam. We analyzed the defects produced at several energy levels when one argon atom collides with a single-walled CNT. At beam energies greater than 32 keV, the resulting defects were mainly single-vacancy defects. In addition to vacancy defects, we found chemisorption on the CNT sidewall, doping of the silica substrate, and cross-linking between the CNT and the substrate; these types of complex defects had a maximum probability of occurrence at around 100 eV and a close to null probability at around 100 keV.