Control synthesis and delay sensor deployment for efficient ASV designs Conference Paper uri icon

abstract

  • 2016 ACM. Adaptive Supply Voltage (ASV) is a power-efficient approach to achieving resilience against process variation and circuit aging. Fine-grained ASV offers further power-efficiency gains, but entails relatively complex control circuit, which has not been well studied yet. This paper presents two control design techniques - one is rule-based control derived from network flow optimization and the other is finite state machine control. For the FSM control, a graph-based algorithm that automates the control vector generation is proposed. To the best of our knowledge, this work is the first dedicated study on fine-grained ASV control. This paper also presents an iterative greedy heuristic for delay sensor deployment in ASV designs. The effectiveness of these techniques is confirmed by experiments performed on ICCAD 2014 benchmark circuits. The results show that our techniques achieve around 20% leakage power reduction compared to coarse-grained ASV, while maintain about the same timing yield.

name of conference

  • ICCAD '16: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN

published proceedings

  • Proceedings of the 35th International Conference on Computer-Aided Design

author list (cited authors)

  • Li, C., Sapatnekar, S. S., & Hu, J.

citation count

  • 1

complete list of authors

  • Li, Chaofan||Sapatnekar, Sachin S||Hu, Jiang

publication date

  • November 2016

publisher

  • ACM  Publisher