Quantifying the potential impact of land cover changes due to sea-level rise on storm surge on lower Texas coast bays Academic Article uri icon


  • 2014 . In this study we investigated the impacts of potential changes of land cover due to sea-level rise (SLR) on storm surge (i.e., the rise of water above normal sea level, namely mean-sea level and the astronomical tide, caused by hurricane winds and pressure) response inside bays on the lower Texas coast. We applied a hydrodynamic and wave model (ADCIRC + SWAN) forced by hurricane wind and pressure fields to quantify the importance of SLR-induced land cover changes, considering its impacts by changing bottom friction and the transfer of wind momentum to the water column, on the peak surge inside coastal bays. The SLR increments considered, 0.5 m to 2.0 m, significantly impacted the surge response inside the bays. The contribution of land cover changes due to SLR to the surge response, on average, ranged from a mean surge increase of 2% (SLR of 0.5 m) to 15% (SLR of 2.0 m), in addition to the SLR increments. The increase in surge response strongly depended on storm condition, with larger increases for more intense storms, and geographical location. Although land cover changes had little impact on the surge increase for SLR increments lower than 1.0 m, intense storms resulted in surge increase of up to 10% even for SLR below 1.0 m, but in most cases, the geometry changes were the major factor impacting the surge response due to SLR. We also found a strong relationship between changes in bottom friction and the surge response intensification; demonstrating the importance of considering land cover changes in coastal regions that are highly susceptible to SLR when planning for climate change.

published proceedings

  • Coastal Engineering

altmetric score

  • 4

author list (cited authors)

  • Ferreira, C. M., Irish, J. L., & Olivera, F.

citation count

  • 16

complete list of authors

  • Ferreira, Celso M||Irish, Jennifer L||Olivera, Francisco

publication date

  • December 2014