Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns. Academic Article uri icon


  • This study focuses on the effect of twist and porosity on the electrical conductivity of carbon nanofiber (CNF) yarns. The process of fabrication of CNF yarns included the synthesis of aligned ribbons of polyacrylonitrile (PAN) nanofibers via electrospinning. The PAN ribbons were twisted into yarns with twist levels ranging from zero twist to high twists of 1300 turn per meter (tpm). The twist imposed on the ribbons substantially improved the interactions between nanofibers and reduced the porosity. The PAN yarns were subsequently stabilized in air, and then carbonized in nitrogen at 1100 C for 1 h. Compressive stresses developed between the PAN nanofibers as a result of twist promoted interfusion between neighboring nanofibers, which was accelerated by heating the yarns during stabilization to temperatures above the glass transition of PAN. The electrical conductivity of the yarns was measured with a four point probe measurement technique. Although increasing the twist promotes electrical conductivity between nanofibers by forming junctions between them, our results indicate that the electrical conductivity does not continuously increase with increasing twist, but reaches a threshold value after which it starts to decrease. The causes for this behavior were studied through experimental techniques and further explored using a yarn-equivalent electrical circuit model.

published proceedings

  • Nanotechnology

author list (cited authors)

  • Chawla, S., Naraghi, M., & Davoudi, A.

citation count

  • 35

complete list of authors

  • Chawla, S||Naraghi, M||Davoudi, A

publication date

  • June 2013