Transport properties in the photonic super‐honeycomb lattice — a hybrid fermionic and bosonic system Academic Article uri icon

abstract

  • © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim We report on the transport properties of the super-honeycomb lattice, the band structure of which possesses a flat band and Dirac cones, according to the tight-binding approximation. The super-honeycomb model combines the honeycomb lattice and the Lieb lattice and displays the properties of both. It also represents a hybrid fermionic and bosonic system, which is rarely seen in nature. By choosing the phases of input beams properly, the flat-band mode of the super-honeycomb lattice will be excited and the input beams will exhibit strong localization during propagation. On the other hand, if the modes of Dirac cones of the super-honeycomb lattice are excited, one will observe conical diffraction. Furthermore, if the input beam is properly chosen to excite a sublattice of the super-honeycomb lattice and the modes of Dirac cones with different pseudospins, e.g., by the three-beam interference pattern, the pseudospin-mediated vortices will be observed. (Figure presented.).

altmetric score

  • 7.25

author list (cited authors)

  • Zhong, H., Zhang, Y., Zhu, Y. i., Zhang, D. a., Li, C., Zhang, Y., ... Xiao, M.

citation count

  • 17

publication date

  • December 2016

publisher