Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds
Academic Article

 Overview

 Research

 Identity

 Additional Document Info

 View All

Overview
abstract

The paper describes relations between Liouville type theorems for solutions of a periodic elliptic equation (or a system) on an abelian cover of a compact Riemannian manifold and the structure of the dispersion relation for this equation at the edges of the spectrum. Here one says that the Liouville theorem holds if the space of solutions of any given polynomial growth is finite dimensional. The necessary and sufficient condition for a Liouville type theorem to hold is that the real Fermi surface of the elliptic operator consists of finitely many points (modulo the reciprocal lattice). Thus, such a theorem generically is expected to hold at the edges of the spectrum. The precise description of the spaces of polynomially growing solutions depends upon a 'homogenized' constant coefficient operator determined by the analytic structure of the dispersion relation. In most cases, simple explicit formulas are found for the dimensions of the spaces of polynomially growing solutions in terms of the dispersion curves. The role of the base of the covering (in particular its dimension) is rather limited, while the deck group is of the most importance. The results are also established for overdetermined elliptic systems, which in particular leads to Liouville theorems for polynomially growing holomorphic functions on abelian coverings of compact analytic manifolds. Analogous theorems hold for abelian coverings of compact combinatorial or quantum graphs. © 2007 American Mathematical Society.
author list (cited authors)

Kuchment, P., & Pinchover, Y.
citation count
publication date
publisher
published in
Research
keywords

Abelian Cover

Elliptic Operator

Floquet Theory

Graph

Holomorphic Function

Liouville Theorem

Periodic Operator

Quantum Graph

Spectrum
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue