Long-term modeling of soil C erosion and sequestration at the small watershed scale Academic Article uri icon

abstract

  • The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion-deposition processes on the C balance of three small watersheds (1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 22 kg C ha-1 year-1 compared favorably against the observed 31 12 kg C ha-1 year-1 in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha-1). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha-1 in W128 and 50.4 Mg C ha-1 in W188) were off by <1 Mg C ha-1. Simulated eroded C re-deposited inside (30-212 kg C ha-1 year-1) or outside (73-179 kg C ha-1 year-1) watershed boundaries compared in magnitude to a simulated soil C sequestration rate of 225 kg C ha-1 year-1 and to literature values. An analysis of net ecosystem carbon balance revealed that the watershed currently under a plow till system (W128) was a source of C to the atmosphere while the watersheds currently under a no till system (W118 and W188) behaved as C sinks of atmospheric CO2. Our results demonstrate a clear need for documenting and modeling the proportion of eroded soil C that is transported outside watershed boundaries and the proportion that evolves as CO2 to the atmosphere. 2006 Springer Science + Business Media B.V.

published proceedings

  • CLIMATIC CHANGE

altmetric score

  • 5

author list (cited authors)

  • Izaurralde, R. C., Williams, J. R., Post, W. M., Thomson, A. M., McGill, W. B., Owens, L. B., & Lal, R.

citation count

  • 65

complete list of authors

  • Izaurralde, RC||Williams, JR||Post, WM||Thomson, AM||McGill, WB||Owens, LB||Lal, R

publication date

  • January 2007