Hypothalamic neuropeptides and the nutritional programming of puberty in heifers Academic Article uri icon

abstract

  • Nutrition during the juvenile period has a major impact on timing reproductive maturity in heifers. Restricted growth delays puberty, whereas elevated BW gain advances the onset of puberty. The initiation of high-frequency episodic release of GnRH and, consequently, LH during the peripubertal period is crucial for maturation of the reproductive axis and establishment of normal estrous cycles. Nutritional signals are perceived by metabolic-sensing cells in the hypothalamus, which interact with estradiol-receptive neurons to regulate the secretory activity of GnRH neurons. The orexigenic peptide, neuropeptide Y (NPY), and the anorexigenic peptide derived from the proopiomelanocortin (POMC) gene, melanocyte-stimulating hormone (MSH), are believed to be major afferent pathways that transmit inhibitory (NPY) and excitatory (MSH) inputs to GnRH neurons. The neuropeptide kisspeptin is considered a major stimulator of GnRH secretion and has been shown to mediate estradiol's effect on GnRH neuronal activity. Kisspeptin may also integrate the neuronal pathways mediating the metabolic and gonadal steroid hormone control of gonadotropin secretion. Recent studies in our laboratories indicate that functional and structural changes in the pathways involving NPY, POMC, and kisspeptin neurons occur in response to high rates of BW gain during the juvenile period in heifers. Changes include regulation of expression in NPY, POMC, and KISS1 and plasticity in the neuronal projections to GnRH neurons and within the neuronal network comprising these cells. Moreover, an intricate pattern of differential gene expression in the arcuate nucleus of the hypothalamus occurs in response to feeding high concentrate diets that promote elevated BW gain. Genes involved include those controlling feeding intake and cell metabolism, neuronal growth and remodeling, and synaptic transmission. Characterizing the cellular pathways and molecular networks involved in the mechanisms that control the timing of pubertal onset will assist in improving existing strategies and facilitate the development of novel approaches to program puberty in heifers. These include the use of diets that elevate BW gain during strategic periods of prepubertal development. 2014 American Society of Animal Science. All rights reserved.

published proceedings

  • JOURNAL OF ANIMAL SCIENCE

author list (cited authors)

  • Amstalden, M., Cardoso, R. C., Alves, B., & Williams, G. L.

citation count

  • 39

complete list of authors

  • Amstalden, M||Cardoso, RC||Alves, BRC||Williams, GL

publication date

  • January 2014