The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. Academic Article uri icon


  • Uteroferrin, the iron-containing, progesterone-induced phosphatase of the porcine uterus, is a glycoprotein carrying a single oligosaccharide chain. Most of the uteroferrin isolated from either uterine secretions or allantoic fluid has endoglycosidase H-sensitive carbohydrate chains with either five or six mannose residues. As determined by 1H-NMR spectroscopy, the Man6 oligosaccharide has the following structure. (Formula: see text) The Man5 species lacks the terminal alpha 1,2-linked residue. Uteroferrin is transported across the pig placenta and has been proposed to be involved in iron transfer to the fetus (see Buhi, W. C., Ducsay, C. A., Bazer, F. W., and Roberts, R. M. (1982) J. Biol. Chem. 257, 1712-1721). Injection of 125I-labeled uteroferrin into the umbilical vein of midpregnant fetuses resulted in incorporation of label into the liver, the major site of fetal erythropoiesis. Light and electron microscope autoradiography revealed that the primary sites of uteroferrin uptake were the reticuloendothelial cells lining the liver sinusoids. Reticuloendothelial cells isolated from either fetal pig or adult rat livers were shown to accumulate uteroferrin when cultured in vitro. Uptake was inhibited by yeast mannan and by glycopeptides isolated from either ovalbumin or uteroferrin. Rat cells did not accumulate uteroferrin whose high mannose chains had been removed using endoglycosidase H. Moreover, the K uptake values (3 X 10(-7) M), specific competition by D-mannose and L-fucose bovine serum albumin, and inhibition by EDTA are consistent with an uptake mechanism involving a receptor for high-mannose oligosaccharides on the liver sinusoidal cells. It is suggested that one function of this receptor in the fetal pig is to remove maternally derived uterine glycoproteins from the fetal circulation. In the case of uteroferrin this process provides iron to the fetal liver.

published proceedings

  • J Biol Chem

author list (cited authors)

  • Saunders, P. T., Renegar, R. H., Raub, T. J., Baumbach, G. A., Atkinson, P. H., Bazer, F. W., & Roberts, R. M.

citation count

  • 59

complete list of authors

  • Saunders, PT||Renegar, RH||Raub, TJ||Baumbach, GA||Atkinson, PH||Bazer, FW||Roberts, RM

publication date

  • March 1985