Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Academic Article uri icon


  • Amino acids and polyamines are essential for placental and fetal growth, but little is known about their availability in the conceptus in response to maternal undernutrition. We hypothesized that maternal nutrient restriction reduces concentrations of amino acids and polyamines in the ovine conceptus. This hypothesis was tested in nutrient-restricted ewes between Days 28 and 78 (experiment 1) and between Days 28 and 135 (experiment 2) of gestation. In both experiments, ewes were assigned randomly on Day 28 of gestation to a control group fed 100% of National Research Council (NRC) nutrient requirements and to an nutrient-restricted group fed 50% of NRC requirements. Every 7 days beginning on Day 28 of gestation, ewes were weighed and rations adjusted for changes in body weight. On Day 78 of gestation, blood samples were obtained from the uterine artery and umbilical vein for analysis. In experiment 2, nutrient-restricted ewes on Day 78 of gestation either continued to be fed 50% of NRC requirements or were realimented to 100% of NRC requirements until Day 135. Fetal weight was reduced in nutrient-restricted ewes at both Day 78 (32%) and Day 135 (15%) compared with controls. Nutritional restriction markedly reduced (P < 0.05) concentrations of total alpha-amino acids (particularly serine, arginine-family amino acids, and branched-chain amino acids) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids at both mid and late gestation. Realimentation of nutrient-restricted ewes increased (P < 0.05) concentrations of total alpha-amino acids and polyamines in all the measured compartments and prevented intrauterine growth retardation. These novel findings demonstrate that 50% global nutrient restriction decreases concentrations of amino acids and polyamines in the ovine conceptus that could adversely impact key fetal functions. The results have important implications for understanding the mechanisms responsible for both intrauterine growth retardation and developmental origins of adult disease.

published proceedings

  • Biol Reprod

altmetric score

  • 7

author list (cited authors)

  • Kwon, H., Ford, S. P., Bazer, F. W., Spencer, T. E., Nathanielsz, P. W., Nijland, M. J., Hess, B. W., & Wu, G.

citation count

  • 126

complete list of authors

  • Kwon, Hyukjung||Ford, Stephen P||Bazer, Fuller W||Spencer, Thomas E||Nathanielsz, Peter W||Nijland, Mark J||Hess, Bret W||Wu, Guoyao

publication date

  • September 2004