Conceptus-Derived Prostaglandins Regulate Endometrial Function in Sheep1 Academic Article uri icon

abstract

  • In sheep, the trophectoderm of the elongating conceptus secretes interferon tau (IFNT) and prostaglandins (PGE2, PGF2alpha, PGI2). The PGs are derived from PG synthase 2 (PTGS2), and inhibition of PTGS2 in utero prevents conceptus elongation. IFNT increases expression of many genes in the endometrial epithelia that regulate conceptus elongation. This study tested the hypothesis that PGs secreted by the conceptus regulate endometrial functions that govern conceptus elongation. Cyclic ewes received intrauterine infusions of control vehicle or early pregnancy levels of IFNT, PGE2, PGF2alpha, or PGI2 from Days 10-14 postestrus. Expression levels of endometrial GRP, IGFBP1, and LGALS15, whose products stimulate trophectoderm cell migration and attachment, were increased by PGE2, PGI2, and IFNT. All PGs and IFNT increased expression of the HEXB protease gene, but only IFNT increased the CST6 protease inhibitor gene. Differential effects of PGs were observed for expression of the CTSL protease gene and its inhibitor, CST3. IFNT, PGF2alpha, and PGI2 increased ANGPTL3 expression, but only IFNT and PGE2 increased HIF1A expression, both of which regulate angiogenesis. For glucose transporters, IFNT and all PGs increased SLC2A1 expression, but only PGs increased SLC2A5 expression, whereas endometrial SLC2A12 and SLC5A1 expression levels were increased by IFNT, PGE2, and PGF2alpha. Infusions of all PGs and IFNT increased the amino acid transporter SLC1A5, but only IFNT increased SLC7A2 expression. In the uterine lumen, only IFNT increased glucose levels, and only PGE2 and PGF2alpha increased total amino acids. These results indicate that PGs and IFNT from the conceptus coordinately regulate endometrial functions important for growth and development of the conceptus during the peri-implantation period of pregnancy.

author list (cited authors)

  • Dorniak, P., Bazer, F. W., Wu, G., & Spencer, T. E.

citation count

  • 52

publication date

  • July 2012